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Abstract 

 
1. A primary goal of ecology is to understand the fundamental processes underlying the 

geographic distributions of species. Two major strands of ecology—habitat modelling 

and community ecology—approach this problem differently. Habitat modellers often 

use species distribution models (SDMs) to quantify the relationship between species’ 

and their environments without considering potential biotic interactions. Community 

ecologists, on the other hand, tend to focus on biotic interactions and, in observational 

studies, use co-occurrence patterns to identify ecological processes. Here, we 

describe a joint species distribution model (JSDM) that integrates these distinct 

observational approaches by incorporating species co-occurrence data into a SDM. 

2. JSDMs estimate distributions of multiple species simultaneously, and allow 

decomposition of species co-occurrence patterns into components describing shared 

environmental responses and residual patterns of co-occurrence. We provide a 

general description of the model, a tutorial, and code for fitting the model in R. We 

demonstrate this modelling approach using two case studies: frogs and eucalypt trees 

in Victoria, Australia.  

3. Overall, shared environmental correlations were stronger than residual correlations 

for both frogs and eucalypts, but there were cases of strong residual correlation. Frog 

species generally had positive residual correlations, possibly due to the fact these 

species occurred in similar habitats that were not fully described by the 

environmental variables included in the JSDM. Eucalypt species that interbreed had 

similar environmental responses, but had negative residual co-occurrence. One 

explanation is that interbreeding species may not form stable assemblages despite 

having similar environmental affinities. A
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4. Environmental and residual correlations estimated from JSDMs can help indicate 

whether co-occurrence is driven by shared environmental responses or other 

ecological or evolutionary process (e.g. biotic interactions), or if important predictor 

variables are missing. JSDMs take into account the fact that distributions of species 

might be related to each other, and thus, overcome a major limitation of modelling 

species distributions independently. 

 

Key-words: amphibians, biotic interactions, community assembly, correlated residuals, 

Eucalyptus, frogs, species covariance 

 

Introduction   

The geographic distribution of a species is influenced by its environmental tolerances, as well 

as by interactions with other species (Hutchinson 1957), but decomposing the roles of abiotic 

and biotic factors on species’ distributions is far from routine. Species distribution models 

(SDMs) that correlate the occurrence or abundance of a species with abiotic variables (e.g. 

climate, topography) are typically used to investigate species-environment relationships 

(Austin 2002). However, most SDMs only implicitly consider interactions between species 

(Dormann et al. 2012), despite the potentially important influence of biotic interactions on 

species’ ranges (Davis et al. 1998; Wisz et al. 2013).  

 

On the other hand, community ecology studies that tackle questions of co-occurrence tend to 

focus on interactions between species (e.g. trophic dynamics, facilitation, or competition). 

The environment is often inferred to be important if species within local communities are 

functionally similar (relative to null or randomized communities) (e.g. Webb et al. 2002). In 

these randomizations, co-occurrence is often represented by an index (Hardy 2008) that does 

not account for the amount of co-occurrence that can be attributed to shared environmental 

responses among species. However, studies are beginning to link the fields of community 

assembly and species distribution modelling (for a review see Kissling et al. 2012). For A
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example, Helmus et al. (2007) used the residuals from an SDM to calculate a co-occurrence 

index, thereby considering the effect of environmental variables on co-occurrence estimates.  

 

Likewise, studies that use SDMs are beginning to consider species interactions by restricting 

the predicted distribution of one species to that of another (Schweiger et al. 2012) or by 

adding the occurrence or abundance of other species as predictors alongside abiotic variables 

(e.g. Leathwick & Austin 2001; Leathwick 2002; Meier et al. 2010; Pellissier et al. 2010). 

The addition of biotic interaction terms has generally improved the predictive performance of 

SDMs (Araujo & Luoto 2007; Heikkinen et al. 2007), and in some cases, biotic predictors 

have outperformed abiotic variables (Meier et al. 2010). However, this approach only models 

unidirectional interactions between species, and confounds the influence of species 

interactions and environmental covariates (Kissling et al. 2012).  

 

Similarities in environmental responses of species can be accommodated in multispecies 

SDMs (Ovaskainen & Soininen 2011; Pollock, Morris & Vesk 2012), and such responses to 

environmental gradients can be modelled as a function of species traits (Pollock, Morris & 

Vesk 2012). However, not all features that influence co-occurrence, particularly biotic 

interactions, will be captured by environmental variables. In this case, residual patterns of co-

occurrence will exist. For example, two species might have a 0.5 probability of occurrence at 

a site, in which case each of the four combinations of co-occurrence (both species present, 

both absent, and one or the other present) would be equally likely if the species occurred 

independently. However, if the species were perfectly positively associated (taken as one 

extreme for illustrative purposes), then they would occur together at 50% of sites, and both 

would be absent from 50% of sites. Alternatively, with perfect negative co-occurrence, one 

species would be present at 50% of sites while the other species would only be present at the 

other 50% of sites, and the species would never occur together. Such residual patterns of co-

occurrence can be thought of as correlations in the random (Bernoulli-distributed) occurrence 

of species.  A
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Hierarchical generalized linear models provide a flexible way to include multiple species in a 

single SDM and incorporate uncertainties that are common in species distribution data 

(Gelfand et al. 2003). Multispecies models result in more precise estimates of model 

parameters for rare species because parameters can “borrow strength” from those of common 

species (Ovaskainen & Soininen 2011; Pollock, Morris & Vesk 2012). Despite these potential 

benefits, hierarchical multispecies GLMs also usually ignore interactions between species, as 

they assume that each species’ response to the environment represents an independent draw 

from a common distribution of possible responses. In practice, however, interactions between 

species will induce unmodeled dependence in the residuals of such a model. These residual 

correlations violate a primary model assumption if not accounted for, but more importantly, 

can be used to gain insights into the relative roles of biotic and abiotic constraints on species 

co-occurrence patterns. 

 

Here we describe a joint species distribution model (JSDM) that introduces correlated 

occurrence into a hierarchical multivariate probit regression model. The statistical foundation 

of this general method was introduced over 15 years ago (Chib & Greenberg 1998), but has 

rarely been applied in the ecological literature. In fact, only 4 of 458 papers that have cited 

Chib & Greenberg’s (1998) seminal work have dealt with ecological problems, and to the 

best of our knowledge, only two studies (Latimer et al. 2009; Clark et al. In press) have used 

a multivariate probit model to fit SDMs (but see Ovaskainen et al. (2010) and Sebastián-

González et al. (2010) for a similar approach using multivariate logistic models).  

 

In contrast to these earlier applications, we provide a general introduction to the use and 

interpretation of these models in ecology. We include a step-by-step tutorial on how to fit and 

assess multivariate probit models in a Bayesian framework, and include code for running 

these types of models in R (R Core Team 2013) (See Appendix S1). To illustrate our 

approach, we examine co-occurrence patterns in natural communities using case studies on A
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frogs and trees in Victoria, Australia. We demonstrate how these models can provide insights 

into the underlying causes of similarities and dissimilarities in distributions among species. 

 

Materials and methods 

MODEL DESCRIPTION 

We model species co-occurrence using a multivariate probit regression model (Chib & 

Greenberg 1998). Probit regression is a generalized linear model similar to logistic regression 

(McCullagh & Nelder 1989). Probit regression relates a linear predictor, the standard 

regression equation used in generalized linear models, to probabilities with a standard normal 

cumulative distribution function or probit link. In contrast, a logistic regression uses a logit 

link function. 

 

An alternative way of parameterising a probit model is indirectly with a latent variable 

formulation, rather than using a probit link directly. Latent (or unobserved) variables are 

superficially similar to link functions as both are used to relate a continuous linear predictor 

to discrete binary response data. If we consider a site by species dataset, Yij, species j is 

present at site i when a latent variable, Zij, is greater than zero (and absent if less). Here Zij is a 

normal random variate with mean Lij and a standard deviation of 1.  

 

We represent this graphically for two hypothetical species (Fig. 1), with the probability of 

presence being the shaded area under the density function for values of Zij > 0. The mean of 

the normal distribution, Lij, is the analogue of the linear predictor in a standard probit 

regression. A large positive value of Lij implies a high probability of presence, while a large 

negative value implies a low probability of presence. For example, the probability of presence 

is 0.69 if Lij = 0.5, and is 0.16 if Lij = –1 (Fig. 1). 

If the latent variable Zij is independent of the other latent variables in the model (i.e., there is 

independence among sites and species), then it is a standard probit regression. However, if the A
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latent variables are correlated, indicating that species presences and absences are not 

independent, then a multivariate normal distribution must be used to model the values of Zij. 

The number of dimensions of the multivariate normal distribution is the number of species 

being modelled. For example, correlation in a latent bivariate normal distribution influences 

the joint probabilities of presence and absence of two species, with the probability of joint 

presence or absence increasing with the correlation coefficient (Fig. 2). However, the 

probability of presence of each species, unconditional of the presence of the other, is 

unaffected by the correlation. In our hypothetical example, the probability of presence of 

species 1 is 0.69 (Fig. 1) regardless of the correlation (summing the probabilities in the two 

right-hand quadrants in each panel of Fig. 2). Similarly, the probability of presence of species 

2 remains 0.16 as the correlation changes.  

 

In the Chib and Greenberg (1998) model, the probability of presence changes when the 

location of the bivariate normal changes, while the correlations defining the multivariate 

normal can stay the same. For example, if the mean of the bivariate normal changes from 

(0.5, –1, as in Fig. 2) to (0.5, –0.5, as in Fig. 3), the probability of presence of species 2 

increases to 0.31 (Li2 changes from –1 to –0.5), but the probability of presence of species 1 

remains 0.69 (Li1 remains 0.5). Thus, associations among species are modelled by changing 

the correlations of the latent multivariate normal distribution, while the (joint) probabilities of 

presence are modelled by changing the locations of the distribution.  

 

While illustrated schematically here using two species and a bivariate normal distribution, the 

approach to modelling correlated occurrences extends to any number of J species by using a 

J-dimensional multivariate normal distribution (Chib and Greenberg 1998). The relationship 

between correlated normal distributions and correlated Bernoulli events has been used 

previously to simulate correlated fire events (McCarthy & Lindenmayer 1998; McCarthy & 

Lindenmayer 2000). Here we use it as a basis to estimate correlations in the occurrence of 

species. A
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MODEL DETAILS 

We fit a multivariate model where the probability of occurrence is the probability density of a 

latent variable exceeding a threshold (eqn. 1). The response is species occurrence, represented 

by the matrix Y with dimensions n sites by J species with elements Yij. If the jth species is 

found at the ith site, then Yij is one (or zero if absent). The response is predicted by a data 

matrix (X) that has dimensions n sites by K predictors. All elements of the first column vector 

of X are ones, which accounts for the model intercept terms, and the remaining column 

vectors are K−1 environmental variables centred on zero and scaled by their standard 

deviations.  

 

            (1) 

 

The probability that the jth species is present at the ith site equals the probability that the 

equivalent element of a latent variable matrix, Zij, is greater than zero, i.e. Zij > 0. The row 

vectors of the latent variable matrix, Zi, follow J-dimensional multivariate normal 

distributions. Each multivariate normal distribution has the same variance-covariance matrix, 

∑. The mean vector of each multivariate normal distribution is the inner product of the 

corresponding row vector of the predictor data matrix, Xi, and an unscaled J by K coefficient 

matrix B* (equivalent to Lij above). The first column vector of B* is the unscaled species 

intercept terms and the remaining K-1 columns are unscaled regression coefficient vectors for 

the kth environmental variable. The elements of the coefficient matrix, Bjk* are modelled 

hierarchically by drawing them from normal distributions common to the kth column, with 

mean µk, and standard deviation σk.  

Our motivation for using a hierarchical approach to estimate the regression coefficients is 

both ecologically and computationally driven. Having a hierarchical structure to estimate 

environmental responses of individual species has previously been demonstrated to have A
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desirable properties for fitting multispecies distribution models (Latimer et al. 2009; Pollock, 

Morris & Vesk 2012). But in this case there are also advantages of the hierarchical estimation 

technique that flow on to the correlated occurrence component of the JSDM (see section 

MODEL FITTING). 

 

A multivariate normal distribution is defined by a variance-covariance matrix, ∑, which 

governs the correlations among variates. Because this approach is based on probit regression, 

all standard deviations are equal to 1, by definition. In this case, the variance-covariance 

matrix is a correlation matrix. Specifying a prior for the correlation matrix is not 

straightforward because elements of correlation matrices are related to each other. The 

inverse Wishart distribution has the necessary constraints for a variance-covariance matrix (it 

is positive definite), but this does not constrain the standard deviations to be one. To ensure 

that the variance-covariance matrix ∑ conforms to a correlation matrix, the covariance terms 

must be divided by the corresponding standard deviations (this is the definition of a 

correlation coefficient).  

 

As Chib and Greenberg (1998) show, this re-scaling of the variance-covariance matrix so that 

it becomes a correlation matrix also requires a re-scaling of the coefficients B* so that they 

can be interpreted as regular probit regression coefficients. Thus, the scaled probit regression 

coefficients, B, are calculated by dividing B* by the standard deviations of the variance-

covariance matrix, which are the square root of the diagonal elements (Σjj). These scaled 

regression coefficients Bjk correspond to the regression coefficients of probit regression for 

the response of species j to environmental variable k. Thus, the probit of the probability of 

occupancy of species j at site i 

is:  (2) 
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We can use the output of the model to decompose species correlations into: (a) residual 

correlation and (b) correlation due to similar environmental responses, which may be used to 

generate hypotheses about mechanisms that explain why species occur together (or not). For 

example, strong correlations due to the environment may suggest habitat filtering. Strong 

residual correlations may hint at a biological interaction between species (e.g. facilitation or 

competition). Residual correlation may also indicate the need for additional explanatory 

variables.  

 

1. Correlation parameters 

                                      (3) 

A correlation matrix P can be calculated by rescaling the variance-covariance matrix. To 

calculate the correlation in the latent distribution between species j and species j', we divide 

their covariance by the product of their standard deviations (eqn 3). 

 

2. Correlation due to environment         

   (4) 

 

We can also calculate a second correlation matrix, ℙjj’, that accounts for the component of 

between species correlation due to their shared environmental responses. Equation 4 shows 

that the environmental correlation between species j and j’ is a function of those species’ 

scaled regression coefficient vectors Bjk and Bj’k and the covariances of the k environmental 

variables, assuming the environmental data has been centred and scaled appropriately as 

above. 
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We include a tutorial and R code for the models as described above in Appendix S1. The R 

package ‘BayesComm’ is also available to run a non-hierarchical version of the model 

described above. This package returns residual correlations between species (Pjj’), but the 

current version does not calculate correlations due to shared environmental responses (ℙjj’). 

‘BayesComm’ is available at http://cran.r-project.org/web/packages/BayesComm/index.html 

(Golding 2013a; Golding 2013b).  

 

MODEL FITTING 

All models were fit with the Markov Chain Monte Carlo Bayesian modelling software JAGS 

v3.4.0 run through R v3.0.2 via the package R2jags v0.03-11 (R Core Team 2013; Plummer 

2014). For both case studies, we ran three chains for 1,000,000 iterations, with the first 

15,000 discarded as burn-in. The remaining samples were thinned by a factor of 1000 

meaning we retained 985 samples per-chain for post-processing. 

 

We used vague priors for all model parameters in both case studies. We used vague normal 

priors (mean=0, sd=100) for the elements of µk and uniform priors in the interval 0 to 100 for 

the standard deviations, σk. For the variance-covariance matrix we used an inverse-Wishart 

prior with J+1 degrees of freedom and a J by J identity matrix as the scale matrix. Using 

these parameters for the inverse-Wishart distribution implies a uniform prior on the off-

diagonal elements of P, the correlation coefficients (Gelman & Hill 2007). We found that 

without regularising the unscaled matrix B* by applying the hyperprior to the column vectors, 

the model would not converge without a more informative prior on ∑. However, using the 

hyperparameters µk and σk allows minimal prior information to be applied to correlation 

coefficients by setting the degrees of freedom parameter at J+1. We considered model runs 

converged where after the burn-in, all elements of the parameter matrix B and the off diagonal 

elements of P had potential scale reduction factor values of less than 1.1. 
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COMPARISON TO CO-OCCURRENCE INDICES 

We plotted environmental and residual correlations from our model against values calculated 

from two co-occurrence indices commonly used in community ecology: Schoener’s Index 

and a modified version of Dice’s Index (Hardy 2008) using ‘species.dist’ in the picante 

package (v. 1.6-1) in R (Kembel et al. 2010). Co-occurrence indices are often used to infer 

ecological processes such as potential species interactions, but unlike JSDMs, these indices 

are not capable of disentangling the influences of shared environmental responses and 

residual correlations on co-occurrence. Comparing the output of JSDMs to typical co-

occurrence indices therefore provides an assessment of how well co-occurrence indices 

capture these two processes. 

 

CASE STUDY 1: FROG COMMUNITIES IN GREATER MELBOURNE 

Our first case study uses data on the occurrence of seven frog species (see Table S1 for a 

species list) at 104 lentic ponds in parks and gardens around Greater Melbourne, Victoria, 

Australia. At each site, nocturnal visual searches and acoustic monitoring were conducted 

three times over two breeding seasons. Anuran assemblages in the study area are strongly 

influenced by pond size, road cover, and the presence of vertical walls surrounding ponds 

(Parris 2006). We, therefore, used these three environmental variables in our analyses. Pond 

surface areas were measured in the field or from aerial photographs. Road cover was 

quantified by calculating the proportion of a 500 m radius surrounding each pond that was 

covered by sealed roads. The presence or absence of a vertical wall at each pond was 

determined during field surveys. For further details see Parris (2006). 

 

CASE STUDY 2: EUCALYPT COMMUNITIES IN THE GRAMPIANS NATIONAL 

PARK 

The Eucalyptus dataset includes 12 taxa (see Table S2 for a taxon list) recorded in 458 plots 

spanning elevation gradients in the Grampians National Park, Victoria, which is known for 

high species diversity and endemism. The Park has three mountain ranges interspersed with A
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alluvial valleys and sand sheet, and has a semi-Mediterranean climate with warm, dry 

summers and cool, wet winters. Plots were based on a nearest-neighbor sampling approach 

intended to be at a spatial scale in which species interact. Species and ecological traits are tied 

to environmental gradients, especially soil type and geology (Enright, Miller & Crawford 

1994; Pollock, Morris & Vesk 2012). Here, we use six environmental variables previously 

found to be important to the focal species. Rock cover, soil sand and loam content were 

quantified in field plots. Valley bottom flatness identifies areas with poor water drainage that 

accumulate sediment, and was derived from a digital elevation model (Gallant & Dowling 

2003). Annual precipitation and temperature variability were estimated using BIOCLIM 

(Houlder et al. 2000). For a further description of the site and environmental variables see 

Pollock, Morris & Vesk (2012).  

 

Results 

Our analyses demonstrate the value of partitioning the effects of the environment (ℙjj’) from 

residual interactions between species (Pjj’). This partitioning revealed contrasting patterns of 

co-occurrence in the frog and eucalypt case studies (Fig. 4). Specifically, frog species tended 

to respond similarly to environmental conditions, and have positive residual correlations in 

co-occurrence (Fig. 5), whereas eucalypt species had much more variable covariance patterns, 

with numerous cases of both negative and positive correlations in environmental and residual 

co-occurrence (Figs. 5). In both case studies, environmental correlations tended to be stronger 

than residual correlations (Figs. 4 and 5).  

Many eucalypt species rarely or never co-occur simply because they occupy distinct habitats 

(negatively correlated estimates of ℙjj’ in Fig. 5). The more interesting cases are those species 

that occupy similar environments, yet co-occur more or less than expected. For example, the 

two species with a particularly high positive residual co-occurrence are from different 

subgenera, whereas the species with similar environmental responses but negative residual 

co-occurrence are closely related and able to interbreed (Fig. 5).  A
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COMPARISON OF OUR RESULTS TO TYPICAL CO-OCCURRENCE INDICES 

Co-occurrence tends to be positively correlated with environmental correlation in the case of 

the Schoener Index (Fig. 6) and a modified Dice Index (Fig. S1), although the relationships 

are generally weak and non-linear. Co-occurrence has no clear relationship with residual 

correlation (Fig. 6, Fig. S1), indicating the JSDM captures complex interactions that the 

simple co-occurrence metrics do not. 

 

Discussion  

THE IMPORTANCE OF INCLUDING RESIDUAL CORRELATIONS IN SDMs 

Species distribution models (SDMs) are widely used to address issues in ecology, evolution 

and conservation, but current approaches to fitting SDMs make a range of limiting 

assumptions (Davis et al. 1998; Guisan & Thuiller 2005). Here we describe an approach that 

can help overcome two of the most important of these assumptions – that all relevant 

environmental covariates are included, and that species distributions are independent of 

interactions with other species. However, like any correlative method that attempts to 

partition environmental and residual effects, our approach cannot fully disentangle which of 

these assumptions is being violated. Residual correlations may be due to missing 

environmental covariates, or ecological (e.g. facilitation) or evolutionary mechanisms (e.g. 

allopatric speciation). Nevertheless, examining residual co-occurrence patterns in light of the 

natural history of the species involved may highlight important environmental variables that 

are missing from a model, or may point to cases where further research would provide 

additional insights into biotic interactions. 

 

Clark et al. (In press) recently demonstrated that JSDMs reduced inflated estimates of 

community abundance obtained from aggregating independent SDMs, resulting in more 

realistic predictions of forest response to climate change. In addition to potentially improving 

estimates of the responses of species to climate change, this modelling approach may help A
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determine whether SDMs should be used to interpolate or extrapolate species’ distributions 

across geographic or environmental space more generally. Most SDMs assume that species 

distributions are in equilibrium with current environmental conditions. However, when there 

are strong residual correlations between species, projections of species’ distributions 

necessarily assume that interactions will remain constant, which is a questionable assumption 

given that species will encounter novel biotic communities in different environments. 

Similarly, if residual correlations are due to missing environmental covariates, then 

projections of species’ distributions might also be suspect. 

 

Most current approaches to incorporating biotic interactions in SDMs involve adding the 

occurrence or abundance of other species as predictors (Araujo & Luoto 2007; Heikkinen et 

al. 2007; Meier et al. 2010). However, adding species as predictors assumes unidirectional 

interactions and induces multicollinearity within a model when the distribution of a predictor 

species is governed by similar abiotic variables (Kissling et al. 2012). In contrast, the 

approach presented here directly estimates reciprocal interactions. Incorporating interactions 

in the residuals, rather than in the mean response, avoids issues of multicollinearity. However, 

JSDMs do not explicitly model species interactions. A more direct approach to understanding 

strong unidirectional interactions (e.g. commensalism) would be to relate one species’ 

population dynamics or performance directly to the occurrence of another species via the 

model mean. 

 

Our analyses demonstrate limitations of using a co-occurrence index to identify potential 

ecological processes in community ecology studies. There are positive relationships (though 

subject to uncertainty) between co-occurrence and environmental correlations for frogs and 

eucalypts (Fig. 6, Fig. S1), which is expected given co-occurring species share environmental 

responses. However, there are no strong relationships between the co-occurrence indices and 

residual correlations estimated from JSDMs (Fig. 6, Fig. S1). JSDMs go a step beyond co-

occurrence indices because they are a model-based approach that decomposes co-occurrence A
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into environmental and residual components. Residual correlation does not necessarily 

indicate a species interaction, but strong residual correlation between species presents a case 

for further investigation.  

 

IDENTIFYING POTENTIAL BIOTIC INTERACTIONS FROM MODEL OUTPUTS 

An important component of the JSDM presented here is that it can partition out the 

contribution of environmental variables on co-occurrence. The environmental effect itself is 

important because it highlights the potential role of habitat filtering in community assembly. 

Conversely, the residual correlation beyond the environmental effect may indicate that other 

ecological or evolutionary processes are important, though correlated responses to 

unmeasured covariates cannot be excluded. Previous studies have also examined residual 

correlations between species after accounting for the effects of environmental covariates 

using similar models (Latimer et al. 2009; Ovaskainen, Hottola & Siitonen 2010; Sebastián-

González et al. 2010; Clark et al. In press), but to the best of our knowledge, no previous 

studies have explicitly quantified the contribution of shared environmental responses and 

residual co-occurrence. Our model identified sets of frog and eucalypt species that occurred 

together more and less than expected given shared responses to the environmental variables 

we considered. Below, we discuss several potential reasons for this pattern with respect to 

previous studies and the ecologies of these communities. 

 

Our analysis of frog co-occurrence patterns revealed that all species generally responded 

similarly to pond area, road density, and the presence of a pond barrier, and the magnitude 

and direction of these effects are consistent with earlier studies of species richness in the 

study area (Parris 2006), as well as findings from a wide range of studies on the occurrence of 

pond-breeding amphibians (Chardon 1998; Popescu & Gibbs 2009; Heard et al. 2013). 

However, many of the residual correlations between species were positive, suggesting that 

species co-occurred more than expected given their shared responses to environmental 

variables. Facilitative interactions between frogs seem unlikely, but positive residual A
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correlations between frog species could have been due to a shared response to an abiotic 

variable that was not considered in our model, such as the presence of fish (Hamer and Parris 

(2013).  

 

In contrast to the frog case study, analyses of eucalypt communities revealed considerable 

variability in shared environmental responses and residual correlations among species. Two 

eucalypt species that co-occur more than expected in neighbourhood plots given their 

responses to environmental variables are Eucalyptus arenacea and E. goniocalyx, which are 

from different subgenera (Fig. 5). Co-dominance of eucalypts from different subgenera is a 

common pattern known as Pryor’s rule (Pryor 1953). A possible explanation for this pattern is 

that species from different subgenera are able to differentiate resource use, thereby alleviating 

competition (Austin, Cunningham & Wood 1983). Another potential explanation is that 

species from different subgenera are not able to interbreed (Ellis, Sedgley & Gardner 1991). 

If species are able to interbreed and one species has a reproductive advantage (e.g. if selection 

favouring one species leads to more pollen output from that species), then, with continued 

back-crossing, all individuals begin to resemble the favoured species (Levin 2006). 

Simulations suggest interbreeding species usually form unstable assemblages because one 

species tends to gain a reproductive advantage over the other (Currat et al. 2008). 

Interbreeding (i.e. hybridization) has influenced the evolution of eucalypts, and may be a 

mechanism for dispersal (Potts & Reid 1988). In our study, the species pairs that are 

reproductively compatible (black dots in Fig. 5) occupy similar environments, but have 

negatively correlated residuals (bottom right quadrant of Fig. 5). In other words, these species 

co-occur less frequently together than we would expect given their similar habitat 

preferences. 

 

FURTHER REFINEMENTS AND APPLICATIONS OF THE MODEL 

One advantage of the hierarchical modelling framework used here is that it can be easily 

modified to account for additional complexities and uncertainties in the data. Additional A
cc

ep
te

d
 A

rt
ic

le
 

 

 



This article is protected by copyright. All rights reserved. 

correlations between species (e.g. functional similarity or phylogenetic relatedness) could be 

incorporated into the model. For instance, similarity in specific leaf area (SLA) between 

eucalypt species increases with shared environmental space, yet slightly decreases with 

increasing residual correlation (Fig. 7). Specific leaf area is functionally related to species 

occurrences along the environmental gradients studied here, explaining the positive 

correlation between SLA similarity and shared environmental space (Pollock, Morris & Vesk 

2012). Other species traits may be related to residual co-occurrence. For example, flowering 

time might be related to residual correlation if temporal niche partitioning is important. In 

these cases, incorporating functional traits as predictors of environmental responses in the 

model (e.g. Pollock, Morris & Vesk 2012) may reveal additional ecological insights.  

 

Our model could also be extended to incorporate imperfect detection probabilities 

(MacKenzie et al. 2002) or spatial random effects (Parris 2006). In cases where data are 

available for more than one time period, our approach could also be used to analyse correlates 

of co-occurrence in community time-series, where the effects of biotic interactions may be 

more readily identified (Mutshinda, O'Hara & Woiwod 2011; Kissling et al. 2012). For 

example, Sebastián-González et al. (2010) used a similar approach to analyse the effects of 

heterospecific attraction on the temporal dynamics of seven waterbird species. Our model 

thus offers a flexible approach for examining a wide range of questions in theoretical and 

applied ecology, and could be adapted to suit a variety of applications. 
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and eucalypts (right panels). 

 

References 

Araujo, M.B. & Luoto, M. (2007) The importance of biotic interactions for modelling species 
distributions under climate change. Global Ecology and Biogeography, 16, 743-753. 

Austin, M.P. (2002) Spatial prediction of species distribution: an interface between ecological 
theory and statistical modelling. Ecological Modelling, 157, 101-118. 

Austin, M.P., Cunningham, R.B. & Wood, J.T. (1983) The subgeneric composition of 
Eucalypt forest stands in a region of south-eastern Australia. Australian Journal of 
Botany, 31, 63-71. 

Chardon, V. (1998) Effects of habitat fragmentation and road density on the distribution 
pattern of the moor frog Rana arvalis. Journal of Applied Ecology, 35, 44-45. 

Chib, S. & Greenberg, E. (1998) Analysis of multivariate probit models. Biometrika, 85, 347-
361. 

Clark, J.S., Gelfand, A.E., Woodall, C.W. & Zhu, K. (In press) More than the sum of the 
parts: Forest climate response from Joint Species Distribution Models. Ecological 
Applications, http://dx.doi.org/10.1890/13-1015.1. 

Currat, M., Ruedi, M., Petit, R.J. & Excoffier, L. (2008) The hidden side of invasions: 
massive introgression by local genes. Evolution, 62, 1908-1920. 

Davis, A.J., Jenkinson, L.S., Lawton, J.H., Shorrocks, B. & Wood, S. (1998) Making 
mistakes when predicting shifts in species range in response to global warming. 
Nature, 783-786. 

Dormann, C.F., Schymanski, S.J., Cabral, J., Chuine, I., Graham, C.H., Hartig, F., Kearney, 
M., Morin, X., Romermann, C., Schroder, B. & Singer, A. (2012) Correlation and 
process in species distribution models: bridging a dichotomy. Journal of 
Biogeography, 39, 2119-2131. 

Ellis, M.F., Sedgley, M. & Gardner, J.A. (1991) Interspecific pollen-pistil interaction in 
Eucalyptus L'Hér. (Myrtaceae): the effect of taxonomic distance. Annals of Botany, 
68, 185-194. 

Enright, N.J., Miller, B.P. & Crawford, A. (1994) Environmental correlates of vegetation 
patterns and species richness in the northern Grampians, Victoria. Australian Journal 
of Ecology, 19, 159-168. 

Gallant, J.C. & Dowling, T.I. (2003) A mutliresolution index of valley bottom flatness for 
mapping depositional areas. Water Resources Research, 39, 1347. A
cc

ep
te

d
 A

rt
ic

le
 

 

 



This article is protected by copyright. All rights reserved. 

Gelfand, A.E., Silander Jr., J.A., Wu, S., Latimer, A., Lewis, P.O., Rebelo, A.G. & Holder, 
M.T. (2003) Explaining species distribution patterns through hierarchical modeling. 
Bayesian Analysis, 1, 1-35. 

Gelman, A. & Hill, J. (2007) Data Analysis Using Regression and Multilevel/Hierarchical 
models. Cambridge University Press, New York. 

Golding, N. (2013a) BayesComm: Bayesian community ecology analysis. R package version 
0.1-0. http://CRAN.R-project.org/package=BayesComm. 

Golding, N. (2013b) Mapping and understanding the distributions of potential vector 
mosquitoes in the UK: New methods and applications. Doctor of Philosophy, 
University of Oxford. 

Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple 
habitat models. Ecology Letters, 8, 993-1009. 

Hamer, A.J. & Parris, K.M. (2013) Predation modifies larval amphibian communities in 
urban wetlands. Wetlands, 33, 641-652. 

Hardy, O.J. (2008) Testing the spatial phylogenetic structure of local communities: statistical 
performances of different null models and test statistics on a locally neutral 
community. Journal of Ecology, 96, 914-926. 

Heard, G.W., McCarthy, M.A., Scroggie, M.P., Baumgartner, J.B. & Parris, K. (2013) A 
Bayesian model of metapopulation viability, with application to an endangered 
amphibian. Diversity and Distributions, 19, 555-566. 

Heikkinen, R.K., Luoto, M., Virkkala, R., Pearson, R. & Korber, J.-H. (2007) Biotic 
interactions improve prediction of boreal bird distributions at macro-scales. Global 
Ecology and Biogeography, 16, 754-763. 

Helmus, M.R., Savage, K., Diebel, M.W., Maxted, J.T. & Ives, A.R. (2007) Separating the 
determinants of phylogenetic community structure. Ecology Letters, 10, 917-925. 

Houlder, D.J., Hutchison, M.F., Nix, H.A. & McMahon, J.P. (2000) ANUCLIM User Guide, 
Version 5.1. Centre for Resource and Environmental Studies, Australian National 
University, Canberra. 

Hutchinson, G.E. (1957) Concluding remarks. Cold Spring Harbor Symposia on Quantitative 
Biology, 22, 415-427. 

Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., 
Blomberg, S.P. & Webb, C.O. (2010) Picante: R tools for integrating phylogenies and 
ecology. Bioinformatics, 26, 1463-1464. 

Kissling, W.D., Dormann, C.F., Groeneveld, J., Hickler, T., Ingolf, K., McInerny, G.J., 
Montoya, J.M., Römermann, C., Schiffers, K., Schurr, F.M., Singer, A., Svenning, J.-
C., Zimmermann, N.E. & O’Hara, R.B. (2012) Towards novel approaches to 
modelling biotic interactions in multispecies assemblages at large spatial extents. 
Journal of Biogeography, 39, 2163-2178. 

Latimer, A.M., Banerjee, S., Sang, H., Mosher, E.S. & Silander Jr, J.A. (2009) Hierarchical 
models facilitate spatial analysis of large data sets: a case study on invasive plant 
species in northeastern United States. Ecology Letters, 12, 144-154. 

Leathwick, J.R. (2002) Intra-generic competition among Nothofagus in New Zealand's 
primary indigenous forests. Biodiversity and Conservation, 11, 2177-2187. 

Leathwick, J.R. & Austin, M.P. (2001) Competitive interactions between tree species in New 
Zealand's old-growth indigenous forests. Ecology, 82, 2560-2573. 

Levin, D.A. (2006) The spatial sorting of ecological species: Ghost of competition or of 
hybridization past? Systematic Botany, 31, 8-12. 

MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Royle, J.A. & Langtimm, C.A. 
(2002) Estimating site occupancy rates when detection probabilities are less than one. 
Ecology, 83, 2248-2255. 

McCarthy, M.A. & Lindenmayer, D.B. (1998) Multi-aged mountain ash forest, wildlife 
conservation and timber harvesting. Forest Ecology and Management, 104, 43-56. 

McCarthy, M.A. & Lindenmayer, D.B. (2000) Spatially-correlated extinction in a 
metapopulation of Leadbeater's possum. Biodiversity and Conservation, 9. 

McCullagh, P. & Nelder, J.A. (1989) Generalized linear models. Chapman and Hall, London. A
cc

ep
te

d
 A

rt
ic

le
 

 

 



This article is protected by copyright. All rights reserved. 

Meier, E.S., Kienast, F., Pearman, P.B., Svenning, J.C., Thuiller, W., Araújo, M.B., Guisan, 
A. & Zimmermann, N.E. (2010) Biotic and abiotic variables show little redundancy 
in explaining tree species distributions. Ecography, 33, 1038-1048. 

Mutshinda, C.M., O'Hara, R.B. & Woiwod, I.P. (2011) A multispecies perspective on 
ecological impacts of climatic forcing. Journal of Animal Ecology, 80, 101-107. 

Ovaskainen, O., Hottola, J. & Siitonen, J. (2010) Modeling species co-occurrence by 
multivariate logistic regression generates new hypotheses on fungal interactions. 
Ecology, 91, 2514-2521. 

Ovaskainen, O. & Soininen, J. (2011) Making more out of sparse data: hierarchical modeling 
of species communities. Ecology, 92, 289-295. 

Parris, K. (2006) Urban amphibian assemblages as metacommunities. Journal of Animal 
Ecology, 75, 757-764. 

Pellissier, L., Anne Bråthen, K., Pottier, J., Randin, C.F., Vittoz, P., Dubuis, A., Yoccoz, 
N.G., Alm, T., Zimmermann, N.E. & Guisan, A. (2010) Species distribution models 
reveal apparent competitive and facilitative effects of a dominant species on the 
distribution of tundra plants. Ecography, 33, 1004-1014. 

Plummer, M. (2014) rjags: Bayesian graphical models using MCMC. R package version 3-12. 
Pollock, L.J., Morris, W.K. & Vesk, P.A. (2012) The role of functional traits in species 

distributions revealed through a hierarchical model. Ecography. 
Popescu, V.D. & Gibbs, J.P. (2009) Interactions between climate, beaver activity, and pond 

occupancy by the cold-adapted mink frog in New York State, USA. Biological 
Conservation, 142, 2059-2068. 

Potts, B.M. & Reid, J.B. (1988) Hybridization as a dispersal mechanism. Evolution, 42, 1245-
1255. 

Pryor, L.D. (1953) Genetic control in Eucalyptus distributions. Proceedings of the Linnean 
Society of New South Wales, 78, 8-18. 

R Core Team (2013) R: A language and environment for statistical computing. R Foundation 
for Statistical Computing. Vienna, Austria. 

Schweiger, O., Heikkinen, R.K., Harpke, A., Hickler, T., Klotz, S., Kudrna, O., Kuhn, I., 
Poyry, J. & Settele, J. (2012) Increasing range mismatching of interacting species 
under global change is related to their ecological characteristics. Global Ecology and 
Biogeography, 21, 88-99. 

Sebastián-González, E., Sánchez-Zapata, J.A., Botella, F. & Ovaskainen, O. (2010) Testing 
the heterospecific attraction hypothesis with time-series data on species co-
occurrence. Proceedings of the Royal Society B: Biological Sciences, 277, 2983-
2990. 

Webb, C.O., Ackerly, D.D., McPeek, M.A. & Donoghue, M.J. (2002) Phylogenies and 
community ecology. Annual Reviews of Ecology and Systematics, 33, 475-505. 

Wisz, M.S., Pottier, J., Kissling, W.D., Pellissier, L., Lenoir, J., Damgaard, C.F., Dormann, 
C.F., Forchhammer, M.C., Grytnes, J.-A., Guisan, A., Heikkinen, R.K., Hoye, T.T., 
Kuhn, I., Luoto, M., Maiorano, L., Nilsson, M.-C., Normand, S., Ockinger, E., 
Schmidt, N.M., Termansen, M., Timmermann, A., Wardle, D.A., Aastrup, P. & 
Svenning, J.-C. (2013) The role of biotic interactions in shaping distributions and 
realised assemblages of species: implications for species distribution modelling. 
Biological Reviews, 88, 15-30. 

 

 

A
cc

ep
te

d
 A

rt
ic

le
 

 

 



This article is protected by copyright. All rights reserved. 

 

Figure 1. Probit regression for occurrence of two hypothetical species (j = 1, the tree 

frog, or j = 2, the toad) at a particular site i depicted using probability density 

functions of the latent normal variate Zij. The species would occur at the site when the 

latent random variable, which has a standard deviation of 1, is greater than 0. Thus, 

the mean of the latent variable (Li1 = 0.5, Li2 = -1.0) determines the probability of 

occurrence. The probability of occurrence equals the shaded area under the density 

function greater than zero (0.69 and 0.16). These representations of individual species 

ignore patterns of co-occurrence. 
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(a) 
0.002 0.16 

0.05 0.11 

(b) 

0.31 0.53 

0.26 0.58 

0.13 

(c) 
0.03 

0.18 0.66 

 

Figure 2. Co-occurrence patterns of the two species from Fig. 1, modelled using a 

bivariate normal distribution represented as contour plots of probability density, with 

correlation 0.75 (a), 0.0 (b), and –0.75 (c). The numbers on the contours (the 

concentric ellipses) are the probability densities that encompass 0.1, 0.3, 0.5, 0.7 and 

0.9 of the volume under the bivariate normal distribution. Each species occurs at the A
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site when the corresponding random variate is greater than 0. Thus, species 1 (the tree 

frog) occurs when Zi1 is greater than zero (the right-hand quadrants), and species 2 

(the toad) occurs when Zi2 is greater than zero (the upper quadrants). The joint 

probabilities of occurrence are indicated by the values in the corners. In all cases 

shown, the probability of occurrence of species 1 is 0.69 (the sum of the probabilities 

in the right-hand quadrants) because the mean of Zi1 (Li1) remains 0.5, as in Fig. 1. 

Similarly, the probability of occurrence of species 2 remains 0.16 because the mean of 

Zi2 (Li2) remains –1. The correlation changes the probabilities of co-occurrence, but 

not the unconditional probabilities of occurrence for each species. 

 

 

 

Figure 3. An equivalent representation of co-occurrence patterns of the two species in 

Fig. 2c, but with a higher probability of occurrence of species 2 (the toad at 0.41) 

because the mean of Zi2 (Li2) has increased from –1 (in Fig. 2) to –0.5. The 

probabilities of co-occurrence of the species have also changed as a result, while the 

probability of occurrence of species 1 is the same (0.69) as the mean of Zi1 (Li1) is 

unchanged.  A
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Figure 4. Network diagrams representing modelled environmental correlation (ℙjj’) 

(left panels) and residual correlation (Pjj’) (right panels) between species of frogs (top) 

and eucalypts (bottom). Blue (dark) lines are positive correlations between species 

and orange (pale) lines are negative correlations. Line thickness represents correlation 

strength. Only correlations in which the credible intervals do not cross zero are 

shown. See Tables S1 and S2 for full species names. 
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Figure 5. Modelled residual correlation (Pjj’) and environmental correlation (ℙjj’) 

between species pairs for eucalypts and frogs. Error bars represent 95% credible 

intervals. Black circles are eucalypt species pairs that interbreed. The open circle 

represents the pair E. baxteri-E. goniocalyx, species from different subgenera.  
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Figure 6. Median (± 95% credible intervals) residual correlations (Pjj’) and 

environmental correlations (ℙjj’) compared to a co-occurrence index (Schoener Index; 

see methods) for frogs (left panels) and eucalypts (right panels).  
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Figure 7. Relationship between residual correlation (Pjj’) and environmental 

correlation (ℙjj’) and similarity in ln-transformed mean specific leaf area (SLA) 

between pairs of eucalypt species. Black circles are eucalypt species pairs that 

interbreed. The open circle represents the pair E. baxteri-E. goniocalyx, species from 

different subgenera. 
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